Semiparametric regression for clustered data

نویسنده

  • B XIHONG LIN
چکیده

We consider estimation in a semiparametric partially generalised linear model for clustered data using estimating equations. A marginal model is assumed where the mean of the outcome variable depends on some covariates parametrically and a cluster-level covariate nonparametrically. A profile-kernel method allowing for working correlation matrices is developed. We show that the nonparametric part of the model can be estimated using standard nonparametric methods, including smoothing-parameter estimation, and the parametric part of the model can be estimated in a profile fashion. The asymptotic distributions of the parameter estimators are derived, and the optimal estimators of both the nonparametric and parametric parts are shown to be obtained when the working correlation matrix equals the actual correlation matrix. The asymptotic covariance matrix of the parameter estimator is consistently estimated by the sandwich estimator. We show that the semiparametric efficient score takes on a simple form and our profile-kernel method is semiparametric efficient. The results for the case where the nonparametric part of the model is an observation-level covariate are noted to be dramatically different.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

Semiparametric Marginal and Association Regression Methods for Clustered Binary Data.

Clustered data arise commonly in practice and it is often of interest to estimate the mean response parameters as well as the association parameters. However, most research has been directed to inference about the mean response parameters with the association parameters relegated to a nuisance role. There is little work concerning both the marginal and association structures, especially in the ...

متن کامل

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

Semiparametric estimation in general repeated measures problems

The paper considers a wide class of semiparametric problems with a parametric part for some covariate effects and repeated evaluations of a nonparametric function. Special cases in our approach include marginal models for longitudinal or clustered data, conditional logistic regression for matched case–control studies, multivariate measurement error models, generalized linear mixed models with a...

متن کامل

Semiparametric Poisson Regression Model for Clustered Data

A semiparametric Poisson regression is proposed in modeling spatially clustered count data. The heterogeneous covariate effect across the clusters is formulated in the context of nonparametric regression while the random clustering effect is based on a parametric specification. We propose two estimation procedures: (1) the parametric and nonparametric parts are estimated simultaneously via pena...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002